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SUMMARY

This report considers the use of single-degree-of-freedom integrating

gyros as torque sources for precise control of satellite attitude. Some

general design criteria are derived and applied to the specific example

of the Orbiting Astronomical Observatory. The results of the analytical

design are compared with the results of an analog computer study and also

with experimental results from a low-friction platform. The steady-state

and transient behavior of the system, as determined by the analysis, by

the analog study, and by the experimental platform agreed quite well.

The results of this study show that systems using integrating gyros

for precise satellite attitude control can be designed to have a reason-

ably rapid and well-damped transient response, as well as very small

steady-state errors. Furthermore, it is shown that the gyros act as

rate sensors, as well as torque sources, so that no rate stabilization

networks are required, and when no error sensor is available, the vehicle

is still rate stabilized. Hence, it is shown that a major advantage of

a gyro control system is that when the target is occulted, an alternate

reference is not required.

INTRODUCTION

For most satellites some form of attitude control is required, and

in many cases the control must be fairly precise. This report will

discuss the use of integrating gyros as torque sources to obtain precise

satellite attitude control. Similar discussions of systems using motor-

driven inertia wheels and the earth's magnetic field are given in

references i and 2.

The requirements placed on satellite attitude control systems vary

from one satellite to another; however, it can be stated generally that

a reference, or tracking line, in the satellite is required to be main-

tained in alinement with a specified external reference, or line of

sight, to a specified accuracy. This must be accomplished in the presence

of disturbing torques and apparent motion of the external reference.
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Motion of the external reference maybe oscil_atory at the orbital
period, as a result of parallax or velocity a_erration, or it maybe
nearly constant, as in the case of an earth-pointing satellite. Dis-
turbing torques acting on an earth satellite _ight comefrom the earth's
gravity gradient, the sun's radiation pressure, the earth's atmospheric
density, and the earth's magnetic field.

An earth satellite which is currently be_mgstudied by NASAand
which will serve as an example for gyro syste_Lcontrol in this report
is the Orbiting Astronomical Observatory. The 0AOwill contain one or
more telescopes, to be used primarily for obtaining photometric and
spectrographic data from ultraviolet star radiation above the earth's
atmosphere. The specific precise control requirements of the OAO,which
will be used as an example in this report, demandthat the pointing
error of the telescope (rigidly attached to the vehicle) be reduced from
i minute of arc to less than 0.i second of arc within 2 or 3 minutes of
time, and the error maintained at less than 0.i second of arc for one
orbital period of approximately I00 minutes. Purthermore, roll motion
about the line of sight must be maintained at less than i second of arc
per second. For solar sighting, the line-of-sLght velocity, due to
apparent motion of the external reference, will have a maximumof 0.01
second of arc per second, predominantly from p_rallax effects. For
stellar sighting, the line-of-sight velocity wLll have a maximumof
0.005 second of arc per second, predominantly _romvelocity aberration
effects. Both of these line-of-sight velocity effects are calculated
in reference i. The disturbance torques were _ssumedto be on the order
of i00 dyne centimeters. A description of the torque inputs leading to
this estimate maybe found in reference 3.

In this report a physical explanation of _he use of a gyro as a
torque source for a satellite is followed by a derivation and discus-
sion of the equations for a single-degree-of-freedom gyro. The over-all
system equations are then developed, both open loop and closed loop, and
the system errors are discussed. The equation_ derived are then normal-
ized and simplified to allow easy visualizatio:l of the system response
characteristics. A sample system based on the exampleof the OAOis
designed, and the results of a three-axis anal_g study are discussed.
Finally, a comparison is madebetween theoreti,_al, analog, and
experimental results for a single-axis system.
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NOTATION

Af

C

H

gyro float angle, radians

gyro damping constant, dyne cm sec

gyro angular momentum, dyne cm sec
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m s

If

KTG

s

t

tc

tlim

tset

Tc

_d

TTG

x,y,z

T

T n

_b

_e

_elim

_LS

_b

_f

stored angular momentum, dyne cm sec

moment of inertia of vehicle, gm cm2

moment of inertia of gyro float, gm cma

over-all gain from sensor to torque generator, (dyne cm)/radian

Laplace operator, sec -l

time, sec

duration of time during which vehicle is to be controlled, sec

time during which error signal is limited, sec

settling time, sec

control torque or gyro output torque, dyne cm

disturbance torque exerted on body by external sources, dyne cm

torque exerted on gyro float by torque generator, dyne cm

uncertainty in the torque exerted on gyro float, dyne cm

axes of a right-hand orthogonal coordinate system

normalized damping ratio

time constant, sec

natural period, 2_
, sec

angle between tracking line and reference, radians

error in pointing, radians

effective limit level of error detector, radians

angle between line of sight and reference, radians

angular velocity of vehicle, radians/sec

angular velocity of gyro float, radians/sec

angular velocity of line of sight, radians/sec
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natural frequency of over-all control system, radians/sec

vector quantity

Sub script s

o

Ol

SS

nlSX

initial value

open loop

steady state

maximum allowable value of quantity

GENERAL SYSTEM DISCUSblON
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A simplified block diagram of a single-_xis control system that

uses an integrating gyro as a torque source _s shown in sketch (a):

Disturbance

torque

Line Pornting I Senso r /

of sight k_. _ error
_ and

_LS _E amp. /

Integrating gyro

4'b

T°rque Igen.
Wheel Signal

gen.

Float

angle

At

Control

torque Tc =,.J

Td

Satellite

Tracking Jline

Sketch (a)

The basic command loop consists of a sensor _;o detect pointing error,

_e, an integrating gyro, which produces a control torque, Tc, acting on

the satellite, and finally the satellite itself, which includes a

rigidly attached telescope.
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The gyros are also rigidly attached to the satellite, with both the

gyro float axis and the spin reference axis perpendicular to the axis

about which it is desired to exert a torque on the satellite. Figure i

is a pict_orial view of one of the gyros, including the angular momentum

vector, H, along the spin axis, the float angular velocity vector, _f,

along the float axis, and the resultant control torque vector, Tc,

along the gyro sensitive axis. The gyro serves both as a source of

control torque and as a rate stabilizing device. This can be seen as

follows: If a torque is exerted about the gyro float axis_ either by

the torque generator or by an angular velocity of the vehicle about the

gyro sensitive axis, the float will move about the gyro float axis at a

rate, wf, (assuming a gyro with fluid damping) proportional to the torque.

The rate of rotation of the gyro float produces a torque, Tc = _f×H,

about the sensitive axis. When Tc is caused by angular velocity of

the satellite, _b, then Tc will be in a direction to reduce the satellite

angular velocity resulting in rate stabilization. When Tc is caused

by the torque generator the gyro will again exert a torque on the satellite
about the sensitive axis.

The amount of control torque available about the gyro sensitive

axis will depend on the velocity of the gyro float about the float axis,

and this in turn, in the steady state, is inversely proportional to the

damping of the gyro; that is, for a given input torque to the float, if

the damping is reduced, the steady angular velocity of the float, and

hence the output torque_ will be increased. The system response, however,

will become more oscillatory; thus_ the selection of damping will depend

on the production of a sufficient amount of control torque without the

response becoming too oscillatory.

It should be noted that if it is desired to obtain a constant

vehicle velocity about the gyro sensitive axis, the gyro float velocity

must be zero to maintain constant angular momentum (assuming zero disturb-

ance torque acting on the satellite). The torque generator must thus

put out a steady-state torque, TTG, sufficient to cancel the gyroscopic

torque, _bXH, acting on the float. This torque-generator torque will be

independent of the dsmping and will react on the vehicle about one of

the other control axes, producing cross coupling. One possible means

for eliminating this cross coupling is to use two counterrotating gyros

for each axis. Then the torque from the torque generator of one gyro

will cancel that from the other gyro, and there will be no net cross-

coupling torque on the satellite. However_ for the example, where the

gyros are used to maintain the vehicle essentially inertially fixed in

space, this cross coupling is found to be negligible.

There are two disturbances to be considered, as previously mentioned:

an angular velocity of the line of sight, and an external disturbance

torque acting on the satellite. Consider first the effect of a constant

angular velocity of the line of sight. In the steady-state condition,

the gyro float angle will be constant, as previously noted, and the net

torque acting on the gyro float must be zero. The torque created by the



angular velocity of the vehicle about the gyro sensitive axis (to follow
the line of sight) must be exactly canceled by the torque from the torque
generator. This latter torque, for the system shownin sketch (a), is
proportional to the tracking error.

Next, consider only the effect of external torque on the system.
To counter this torque, the gyro must have a constant velocity about its
float axis, which, since the gyro is damped_requires a constant torque
from the torque generator. Since the satellit_ is not rotating there
will be no torque on the float from gyroscopic precession. Again, the
torque from the torque generator is proportion_l to the tracking error.

Thus, to correct for either type of disturbance, there must be a
steady-state pointing error, and to keep this pointing error small the
sensor and amplifier gains must be quite large.

DERIVATIONOFSYSTEMEQUATIONS

Gyro Transfer Function
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The block diagram of an integrating gyro is shown in sketch (b):

Amp. and

torque gen.

Gyro

precession

Torque

uncertainties

Float

sif

Fluid

damping

Gyro

precession

Tc

Af

Sketch(b)
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The three summing points shown represent the torque summing action of

the gyro float, with the net resultant torque being available to accel-

erate the float, and thus produce an angular velocity of the float, _f.

The torque inputs to the gyro about the float axis are from the torque

generator, TTG; an uncertainty, TUG, resulting from gravity unbalance,

spring torques, etc.; the gyro precession, -mbH , which is perpendicular

to _b and H; and fluid damping_ -_fC. Float velocity, _f, resulting

from the summation of these torques produces an output control torque_

Tc = _fH, about the sensitive axis.

The over-all gyro equations obtained from sketch (b) are

sC
Af=

i + s(If/c)
(I)

_c: mf :_ + RlfTc) -J
(2)

Equation (2) shows that the gyro can have a torque multiplying effect

(provided H/C > i)_ so that the control torque exerted on the body can

be many times larger than that exerted by the torque generator on the

gyro float.

The complete block diagram for single-axis control is shown in

sketch (c) .

TU G Td

C

H-s-_

Sensor

ond omp I----

TTGI =_
I

_b

-- s I-

i

I

I
Gyro

i

J

w b

Satellite

Sketch (c)
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The gyro representation is simplified from that of sketch (b) by use of

the transfer functions of equations (i) and (2). Included are the

external disturbance torque, Td, acting on the satellite, and the uncer-

tainty torque, TUG , acting on the gyro float. The gyro float angle,

Af_ is not used in this application, except as a measure of the amount
of momentum stored.

It should be noted that the torque from the torque generator, TTG,

the uncertainties, TUG, and the damping, C_f, 311 act on the float and
react on the case, so that these reactions appear as disturbing torques

about one of the other satellite axes. However, in the steady state

their values will be much smaller than the control torque, Tc, and so

will not seriously affect the response of the system.

Open-Loop Transfer Functions

A
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The open-loop transfer functions applica.ble to sketch (e), assuming

the loop is broken at point A, are:

For angular velocity of the vehicle;

_bo I =

c(I 0Td_ s _- + + (¢UC_+ TTO)

s2 Iblf IbC_+s_+l
H2 H2

(3)

For gyro float angle;

Afo I =

Ib _d i

(_o + _-,) 7 I{ s

s2 I.blf r-bC
-.T + s + 1

(_)

Closed-Loop Transfer Functions

If the loop is now closed_ the relation

KTG

_ = -7- (_ns- _) (5)

can be used to obtain the closed-loop transfer functions. From equations

(3) and (5), the angular velocity equation is found
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_b

_LS + If i> %1Td C s + +

s HKTG -_ s KTG

Ib If IbC H
s_ -- + s2 I + s + l

HKTG HKTG K-_

(6)
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Since the chief concern is the magnitude of the error angle, _e_

the closed-loop error equation is desired. Using the relationship

Wb = _LS - s_e

and solving for _e gives the desired equation:

_e --

WLS _TG sa --H2 + s --H2 + - Td _-_ s + - _CG _TG

s3 Iblf Ibc-- + s_ --+s + 1
HKT G HKT G

The associated float angle, Af, found by substituting

(7)

(8)

TTG = <_L9
sifH + Td] KTG

slb j s
(9)

into equation (4), is

Ib Td < Hs + i> I + Slb

Af = (lo)
Iblf zbc i{

ss -- + s2 -- + s + i
HKTG HKTG K-_

Steady-State Considerations

Consider first the condition when the object star is occulted by

the earth; that is, KTG = O. Applying the final-value theorem for step

inputs of Td, TUG _ and TTG to equation (3) gives

= C i i
(ll)
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It is interesting to note that the result_u_t steady-state satellite
angular velocity is independent of the satelli:;e momentof inertia. This
can be seen physically by realizing that for UTG-- 0 the control torque,
Tc, generated by the gyro depends mostly on vehicle angular velocity,
and when this torque equals the disturbance torque, Td, there will be no
further change in the vehicle velocity. Furth.._rmore, equation (ii)
points out a great advantage of the gyro syste_ over other types of
control systems, namely rate stabilization. Thus, without an error
detector, the vehicle will assumean angular v,._locity which varies
linearly with and is approximately proportional_ to the disturbing torque.
This can be comparedto the angular velocity of a vehicle, still with
no error detector, but also with no gyro aboard[. In this latter case
the external torque produces a constant accele_'ation, and so the angular
velocity will increase at a steady rate_ that _s

_ ~ TdOlss _b t (12)

If equations (ii) and (12) are integrated, the effectiveness of this rate
stabilization can be determined. After a reas)nable period of occultation,
it is found that for manypratical application_, the error angle with
the gyro control system is much smaller than t _at for the uncontrolled
case. In the OAOexample, the error for the uncontrolled case might be
muchgreater than the range of the error detector, while for the gyro-
controlled case, the error would remain within the range of the error
detector so that the gyros would eliminate the need for switching to a
coarse control system following occultation.

For the occulted condition the steady-state float angle may also
be found if the inverse transform of equation [4) is simplified for
large values of t.

Td
Afols s _ - -_- t

(15)

This equation shows that the float angle will increase constantly with

time, and thus that the gyro momentum vector rDtates to cancel the effect

of the external torque.

For the complete system, with a signal av{ilable from the error

detector, the steady-state equations obtained from equations (8) and (10)

are:

E c %G
q%ss = _°I_ K-_ - Td HKTG KT G (14)

Ib Td
: tAfss H H

A

4
4

3
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The sighting error, _ess , reaches a steady-state value which can

be made small with proper design. The portion of the float angle, Afss,

resulting from wLS is a relatively small constant, but that from the

disturbance torque increases directly with time. This is to be expected,

since it shows that the gyro is storing the momentum resulting from the

extermal torques.

NORMALIZED DESIGN

A
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In the actual design of a control system, the first considerations

are the amount of disturbance torque expected and the length of the time,

tc, over which the control system must counter this torque. These two

factors determine the amount of momentum which the control system must
be able to store.

Since torque is the time derivative of momentum, the stored momentum_

Hs, must equal fT d dt. If a constant disturbance torque is applied for

the duration of the control time, the maximum stored momentum becomes

Hsmax = Tdt c. In turn, the stored momentum will be the product of gyro

wheel momentum, H, and the sine of the float angle, Af. Since the float

angle must be limited to relatively small angles to avoid excessive

cross coupling, sine Af _ Af. Hence,

Hsmax Tdt c
.... (16)

Alma x Afmax

which will allow the determination of H.

Omce a value for H is selected, it seems reasonable to normalize

all other variables with respect to this value. When this is done, the

equations previously derived take the following forms: For the open

loop, from equations (3) and (4),

_dC_ If_ i_ _UG T_G_ s-fiT+ + --if-+ --if-

(17)
_bol = Ib If Ib C

s2i_+ s +l

_ _G_ Ib Td i+ H H s

Afo_ = (18)
s2 Ib If + s IbE+ m

H H H H
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These reduce to the following steady-state equ_.tions (from eqs. (ii)
a_d (13)):

Td C TUG TUG
+ -2- + --- (19)

_boms s H H ][

Td
= - _ t (20)

Afolss H

For the closed loop, from equations (8) and (i0),

<Pe =

coLS _ s2 _ _ + s + s +:: :: -2-2 _ ::KT(_ 7: ::
H

KTG

A
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3

s3 I b If H

H H KTG

+ s2 ....Ib C H + s H + i

H H KTG KTG

(2l)

lb Td(_T G 1) TUG Tb H_LS H sH s + +--_-s H KTG

Af = (22)

s3 1b If H s2 Ib C H + s _ + i
T _ + H I_KTG KTG

And the steady-state.equations (from eqs. (14) and (15)) become

H Td C H [i_G H
- (23)

epees _LS KT G H H KTG H KTG

I b Td

Afss= wlS H H t (24)

It should be noted, as mentioned previously, that the term involving

_LS in equation (24) is usually,very small, aid can be neglected in

comparison with the external torque term.

Equation (23) , which is plotted in figure 2. can be used to determine

limits on KTG/H and (C/H)(H/KTG) by considerlrg the values of allowable

error and external disturbances expected. Since, in general, it is

desirable to operate without excess forward-loop gain, this figure can

be used to fix the value of KTG/H, except that: when C/H is selected,

the product must be checked. The remaining normalized parameters are

Ib/H, If/H, and C/H. The first of these is known as soon as the vehicle
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is selected. As will be shown later, it is desirable for the quantity

If/H to be small. Its actual size is determined by mechanical consid-

erations of gyro design. For good system design, C/H should be

selected on the basis of desired transient performance. This can be

done more easily if the transfer function is simplified.

It would be desirable to reduce the form of equation (21) from a

second-order numerator and third-order denominator to first and second

orders, respectively. Considering first the denominator, it can be

shown that if the ss term is very small compared to the s2 term at

s = jUn, then, for reasonable values of damping ratio, the s3 term may

be dropped, with negligible effect on the system response. For equation

(21) this requirement for simplification is stated mathematically as

Ib If H 2 Ib C H

H H KTG uns < < un H H KTG
(2s)

which reduces to

I£ C

-y_n < < _ (26)

or, alternatively, If/C < < i/_ n. Since If/C is the time constant of

the gyro float response (sketch (c)), it is reasonable to expect that

lf/C will, in fact, be much less than i/_n if the float response time

is not to degrade the over-all system response. This inequality must,

of course, be checked when the design is completed.

The numerator of equation (21) should now be considered. Since the

denominator will attenuate greatly all frequencies higher than _n, it

seems reasonable to compare the relative sizes of the numerator terms

at wn. If this is done, the numerator term associated with _LS, at

s = J_n, becomes

% If % cTT +_n s H +t

When equation (26) is applied, it can be seen that the first term

is negligible compared to the second and can be dropped. Further simpli-

fication of the numerator can be made by comparing the numerator term

associated with Td at s = J_n,

If H

Un H C +I
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With equation (26) written as

If H

H C wn<<l

it can be seen that the term associated with Td reduces to unity. Thus

with the one assumption of equation (26), equation (21) becomes

_LS_-_ _s+

Td C I{ TUG t{

H H _TG H KTG

_0e =
s21bC H +s H

+I

(27)

This equation is independent of the float inertia, If, and, as would be

expected from the remarks concerning the ineq_lality of equation (26),

equation (27) could be obtained directly from sketch (c) by setting

If : 0.

Rather common symbols for second-order e(uations may be used to

write equation (27) as

_e =

i (Ts+ l)
_ns _-_

Td C H TUG H

H H KTC H KTG

s2 2__+_s +i
Wn 2 _n

(28)

A
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where

T _
Ib C (29)
H H

J H H KTO (3O)_n : "Ib C H

i J H _ E (3_)

It should be noted that these three quantitie_ are related by

2_WnT = 1 (32)
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and further, subject to the restrictions of equation (26), they are

independent of If/H.

From dimensionless transient response curves_ such as those given

by Truxal on pages 38 to 41 (ref. 4), one can see that if

•Wn < i (33)

the over-all transient response will have only slightly more overshoot

than a simple second-order system with no zero. Thus the system can be

designed for a damping ratio, _, in the region of 0.5 to 1.0 (resulting

in Tun _ i, from equation (32)) with assurance of reasonable transient

response.

Selecting a damping ratio of 0.7 (giving Tu n = 0.7) and solving

equation (31) for C/H gives:

C i H H

: 2 KTo Ib (3_)

Changing the desired damping ratio will of course change the numerical

coefficient in equation (34).

The system design has now been completed, presumably satisfactorily.

It is desirable to be able to check the behavior of this system when the

target star is occulted, which is theoretically the same as setting

KTG = 0. When the inequality of equation (26) is applied to equation (17),

the following equation is obtained:

Td C TUG TTG

-_[+ -_- +-_-

This is now effectively a first-order system with a time constant

(37)

Ib C
--- = T (36)T°±= H H

The complete design procedure developed may be summarized as follows:
(i) select a value for H, using equation (16); (2) select a value for

KTG/H from figure 2(a); (3) compute the value of C/H required for

0.7 damping from equation (34) (or for any other damping ratio from

equation (31)); (4) check figure 2(b) to see that the resultant (C/H)

(H/KTG) is satisfactory; (5) compute values for T and _n from equations

(29) and (30); (6) check to see that the inequality of equation (26) is
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satisfied; (7) check to see that the numerato_ _ zero does not deteriorate

the performance, using equation (33); and (8) examine the open-loop

performance, using equation (35).

ERROR AND TORQUE GENERATOR LI_MITING

In actual practice, the signal from the sensor will be a voltage

that will be limited at some relatively small angle, compared to the

maximum error angle the sensor can detect. ALso, there will be some

maximum torque, TTO, available from the torque generator. However, since

the sensor and torque generator are adjacent, they may be combined as

shown in sketch (c). During the time the system is limited, it is

operating open-loop, and equations (17) thro_!_h (20) apply. Equation

(19) shows that if the torque-generator torqu,_ (or the error) is limited

at some maximum value, the vehicle will have a corresponding maximum

angular velocity. If very large initial errors exist, the gyros will

accelerate the vehicle to this maximum angular velocity. The vehicle

will then coast at this velocity until the er:L1orbecomes less than the

limiting value. Since the vehicle is thus essentially passive during

this coast period, the size of the initial error will not affect the

final portion of the transient after a linear error signal becomes

available. Thus, system stability is essentially independent of the

size of the initial error, although the total settling time will be

lengthened as the initial error is increased.

An estimate of the time, tlim, during which the error is limited,

can be made by means of steady-state characteristics. If the vehicle is

assumed to rotate at its maximum angular velocity, mbmax , until the error

becomes equal to the limited value, _elim, thm it can be stated
mathematically that

tli m = _e° - _elim (37)
_bmax

This equation assumes that the time to accelerate to Wbmax is

negligible. Equation (19) can be written for this purpose as

TTG q0elimKT ]

Wbmax --_ = H

Thus

9eo - _elim H
tli m = -- (38)

_eli m KT<]
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For a second-order system, such as the one represented by equation

(27), it can be show_ that if the damping ratio is about 0.7, the

settling time from an initial step in error to 2 percent of the initial

value is comparable to the natural period. If the velocity of the

vehicle when the error becomes unlimited is neglected and the final error

is assumed to be about 2 percent of the limiting error, then the linear

portion of the settling time can be approximated by Tn. Thus the total

settling time may be approximated by

A
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tse t = tli m + Tn (39)

In this equation Tn is too large, since the vehicle velocity at the

limiting error is assumed to be zero, and tli m is too small, since the

initial acceleration is assumed to occur instantaneously.

SAMPLE DESIGNS

A set of equations and curves has now been developed which will

enable a control system to be designed with satisfactory transient

response and steady-state errors. These curves and equations will now

be used to design a sample system for the OAO. The requirements for
this satellite are as follows:

I_es s _ 0.i second of arc

tc = 105 man

The satellite moment of inertia is assumed to be

Ib = 101°dyne cm sec 2

and the maximum values of disturbances are assumed as

_LS = 2"4×10-Sradian/sec _ 0.005°/hr

Td = i00 dyne cm

The necessary gyro constants will be assumed as

TUG = i dyne cm

If
m = 1.4×lO-Ssec
H
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To minimize cross coupling, the gyro float an_le is limited at 3°. From

equation (16) it is found that H = 1.2_<lOFdyne cm sec. Allowing an

additional margin of safety and using a round number gives

H = 2><107dyne cm sec

Then

_ = 5><10-Ssec -1

Td : 5><10-6sec -1
H

Ib
-_-= 5><10asec

To meet the steady-state error requirement (_essI< 0.i second of

arc), the following gain and damping requirem__nts are determined from

figure 2 :

due to I_LSI

due to TUG
H

due to ITdl
H

KTG _

-_- > 0.05 sec

KS-_G> 0.i sec -m
H --

_KT---Z_> lO sec -l
H C--

For KTG/H = 0.i sec -l, which is the mirimum allowable value,

Ib/H = 5XlO a see, and _ = 0.7, it is found from equation (34 ) that

C/H = 0.01. Checking for the (KTG/H)(H/C) product gives

KTG H 0.i

H C 0.01
= i0

which is satisfactory. Values for T and _n can now be found by using

equations (29) and (30), which give T = 5 sec and _n = 0.14 radian/sec.

The inequality of equation (26) becomes 2><!0-4 < < 10 -2 , which is

satisfied.
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The value of the numerator zero is found to be (from eq. (32))

_n = 0.7. Since this is less than i, the zero will have little effect

on the over-all response (as previously discussed for eq. (33)). The

time constant of the open-loop response is found from equation (36) as

TOl = 5 sec

A
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Thus_ the over-all design appears satisfactory, and the table below

lists the values of the parameters and response characteristics of the

system.

Ib = 101°dyne cm see 2

H = 2><107dyne cm see

If
-- = 1.4XlO-Ssec
H

=0.7

_n = 0.14 radian/sec

Tn : 45 sec

KTG
- 0.i see -I Tol = 5 sec

H

C
--= 0.01
H

Equations (38) and (39) can be used to estimate the settling time of

this system. With an initial error of 60 seconds of arc and an assumed

limit level of 5 seconds of arc,

tse t = 195 seconds

This value is not unreasonable, and it can be reduced, if desired, by

raising the limit level.

ANALOG SI_TION

To check on the analytical work just presented, an analog study was

made of the gyro control system. The three-dimensional problem was

simulated; that is, three gyros and three single-axis sensors were

mounted on the satellite.
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The gyros were mounted, as shownin sketch (d), so that the
sensitive axis of the x gyro was alined along the satellite x axis,

I z Axis
I
I
I

x Axis /./''_

./ yz Gyro

Gyro

,

<.
_. y Axis

F

S= Sensitive axis
F= Float axis

SRA =Spin reference axis

Sketch (d)

and the float axis was alined at 45 ° to the satellite y axis. The

sensitive axis of the y gyro was along the :_atellite y axis, and its

float axis was 45 ° from the satellite z axi{. The z gyro was alined

in a corresponding fashion. The advantage of this gyro mounting arrange-

ment (suggested by the Reeves Instrument Corp_)ration) is that the sum of

the three H vectors is equal to zero. As a result, changes in wheel

drive frequency will not exert a torque on th_ satellite.

Figure 3 shows the analog diagram for th_ system. Figure 3(a) shows

one channel of the control system; the other ;wo are identical. Figures

3(b) and 3(c) show the necessary torque and a_igular velocity resolutions,

resulting from the 49 ° angle between float an[ satellite axis, and from

the rotation of the floatj Af_ about the floa_ axis. The broken lines

in figure 3(a) complete the signal paths when only a single-axis system

is being considered.
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Figure 4 shows the response of the system to a step position input

about one of the axes. It was assumed that all three float angles were

initially zero and that the error limit was 5 seconds of arc. l The

responses for step inputs about the other two axes had the same charac-

teristics, with no indication of cross coupling. Runs made with initial

errors about two or three axes also showed the same response characteris-

tics, with no cross coupling.

Figure 5 shows the response to the same input, but this time with

an initial, very large float angle of the x gyro, Afx , of 15 °. The

input was only in the x axis and, as show_ in figure 5, the response

of this channel was essentially the same as in figure 4. The cross

coupling produced error and float angular velocity in both the y and z

channels. The responses of these two channels were very similar, although
only the y channel is sho_. Additional runs were made in which the

other gyros had initial conditions, and the responses were very similar

to those shown in figure 5.

The effect of torque input was also studied on the analog computer,

with the results shown in figure 6. Here there was a step input of

torque of i00 dyne cm, and, as expected, the error angle reached a

steady-state value of 0.i second of arc, and the float angle increased

at a constant rate. The other channels showed no signs of cross coupling.

Since the cross coupling is small, a study of the effect of varying

the parameters can be carried out on a single-axis system and the

predicted response characteristics from the linear analysis should be

reasonably valid. A simplified data analysis of figure 4 indicates a

system damping ratio, in the linear region, of about 0.7 and a natural

period of 45 seconds. The settling time, computed from equations (35)

and (39) using _eo = ii seconds of arc and _eli m = 5 seconds of arc,

is 97 seconds. Thus, the values from the analog simulation agree very well
with the predicted values.

EXPERIMENTAL EVALUATION

Some experimental work was carried out on a low-friction, three-

degree-of-freedom platform. The platform_ sho_ in figure 7 and described

in more detail in reference i, was supported on an air bearing to obtain

extremely low friction levels. This platform had a considerably smaller

moment of inertia than the OAO, and the gyros used on the platfo_n _ere

specially modified single-degree-of-freedom gyros. The particular
constants are

mWith the value of torque generator gain used, this corresponds

to a maximum torque-generator torque of 50 dyne cm.
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Ib = 2.4×lOSdyne cm seca

H = 9.6><106dynecm sea

If = 1.4xl04dyne cm sec2

C = 2.7><105dynecm sec

Computing the samenormalized design ratios used previously gives

Ib
7 = 25 sec

If
--_= 1.5><lO-Ssec

= 0.028
H

Experimentally, a gain of KTG/H = 1.7 sec "l was used to obtain

reasonable response. From equation (23) it can be shown that the

following inputs can be tolerated for I_ess I _ 0.i second of arc:

_LS < 8 •4×10-Tradian/s'_c

TU__<8 dyne cm

T_ _< 290 dyne cm
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As will be sho_n later, it was found that the platform had random errors

of about 1.0 second of arc. From equation (21;), it is found that a torque

of about 3000 dyne cm would produce a steady-_tate error of this value.

The parameters indicated for the system may be used to compute the

response characteristics. For damping ratio, equation (31) is used to

obtain

= o.4g

For natural frequency, equation (30) is used to obtain

_n = 1.6 radians/sec
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which corresponds to a natural period of

Tn = 3.9 sec

These values indicate that the response is reasonably damped, but faster

than necessary. The speed of response cannot be reduced (by reducing

the gain) however, without causing an increased steady-state error. The
inequality of equation (26) is satisfied since

2.4Xi0 "s < < 2.8Xi0 -2

The value of T is calculated from equation (29)_ giving

T = 0. 7 sec

and the value of Te n is found to be

Te n = i.i

This value does not satisfy the inequality of equation (33), so the

numerator term of equation (28) cannot be completely neglected in

estimating the response; however, its effect is only to increase the

initial overshoot by about 15 percent. The time constant, for the open-
loop system, from equation (36), is

Tol = T = 0.7 sec

The following table lists the parameters and the system response
characteristics:

Ib = 2.4XlOSdyne cm sec 2 = 0.46

H : 9.6Xl06dyne cm sec _n -- 1.6 radians/sec

If/H = 1.5×lO-Ssec Tn = 3.9 sec

= 0.028 TOZ = 0.7 see

KTG/H = 1.7 sec -1

Figure $(a) shows the experimental transient response of the platform

to an initial error. No limiting occurs in the sensor or torque generator_

and the natural frequency and damping compare favorably with the computed

values. It can be seen that accuracy of control is only about i second

of arc. It was felt that this large error was caused by external dis-

turbances acting on the platform. Figure $(b) shows the analog simulation

which used the parameters of the experimental platform and included

"random" steps of external torque having a magnitude of about i000 dyne cm.

It can be seen that the general character of the initial response is

essentially the same. The amplitude of response of the experimental
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platform to external disturbances is about three times as large as that
of the analog system to the analog disturbance. Since the analog dis-
turbance was iO00 dyne cm, this would indicate an experimental disturb-
ance of about 3000 dyne cm, which agrees very well with the value of
disturbance torque previously estimated. The system responses about the
other axes were similar and no cross coupling between the channels was
noted.

CONCLUDINGREMARKE

The results of this investigation have sThownthat single-degree-of-
freedom integrating gyros, acting as torque sources,can provide precise
attitude control of a satellite. The transient behavior of such a system
is reasonably rapid and well damped. The steady-state errors of the
system, in response to external disturbances and motion of the line of
sight, appear to be sufficiently small for msLnyapplications. The gyros
act as rate sensors as well as torque sources, so that no rate stabili-
zation networks are required, and when no error sensor is available, the
vehicle is still rate stabilized. Hence, a _ajor advantage of a gyro
control system is that whenthe target is occulted, an alternate reference
is not required. In addition, because of th_ torque multiplying effect
of the gyro, the torque generator and_ there<ore, the driving amplifier,
can be smaller than would be the case for inertia wheels_ where the
torque is developed directly by the motor.

Comparedto an inertia wheel system, one disadvantage of the gyro
system is that only about 5 percent (for a float angle of ±3°) of the
gyro momentumis available for active control; thus a larger or faster
turning wheel is required. Other disadvantages, which are not mentioned
in this report, are the additional moving parts and weight required for
the gyro float and case, which may have to b_ temperature controlled,
requiring additional power. These advantage_ and disadvantages, along
with total system weight and power, must be _onsidered when a system for
an actual satellite is being designed.
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AmesResearch Center
National Aeronautics and SpaceAdministration

Muffett Field, Calif._ July 12, 19_i
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Figure i.- Pictorial view of a single-degree-of-freedom gyro used in
satellite.
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